ARBEITSBLATT ZU DERIVE

- **Aufgabe 1:** Führen Sie unter Verwendung des Übersichtsblattes zu den wichtigsten Befehlen von DERIVE die folgenden Aufgaben durch:
 - a) Definieren Sie die Funktion $f(x) := x^3 + x^2 6x$, so dass DERIVE diese Funktion kennt. (Vergessen Sie nicht, vor dem "="-Zeichen einen Doppelpunkt ":=" zu setzen!)
 - b) Berechnen sie den Funktionswert an der Stelle $x_0 = 4$, indem Sie den Ausdruck f(4) "Schreiben" und anschließend algebraisch "Vereinfachen".
 - c) Berechnen Sie zuerst schriftlich die Nullstellen der Funktion f und testen Sie Ihre Ergebnisse anschließend mit DERIVE. $x_1 = 0$ ist z. B. eine Nullstelle und auch DERIVE errechnet den Ausdruck f(0) zu 0.
 - d) Lassen Sie DERIVE die Nullstellen der Funktion komplett berechnen. Stellen Sie dazu die Gleichung f(x) = 0 auf und "Lösen" Sie diese algebraisch. "Vereinfachen" Sie schließlich die Lösung. Erhalten Sie die gleichen Lösungen wie in c)?
 - e) Bilden Sie von der Funktion f die erste Ableitung. Wählen Sie dazu den Menüpunkt Analysis | Differenzieren und geben Sie im großen Eingabefeld f(x) ein. DERIVE berechnet die 1. Ableitung.
 - f) Weisen Sie dieser Funktion noch einen sinnvollen Namen zu. "Schreiben" Sie dazu einen neuen "Ausdruck", tippen Sie anschließend $f_1(x) := \text{und drücken}$ sie anschließend die F3-Taste. DERIVE kopiert den im Algebra-Fenster blau markierten Ausdruck in die Eingabezeile. DERIVE kennt nun auch die Funktion $f_1(x) = 3x^2 + 2x 6$.
 - g) Berechnen Sie die Nullstellen der Ableitungsfunktion, d. h. die potentiellen Extremstellen.
 - h) Testen Sie mit Hilfe der zweiten Ableitungsfunktion, ob es sich tatsächlich um Extremstellen handelt, d. h. bilden Sie die 2. Ableitungsfunktion

$$f_2(x) = 6x + 2$$
 und berechnen Sie die Funktionswerte $f_2(\frac{-1 + \sqrt{19}}{3})$ und

$$f_2(\frac{-1-\sqrt{19}}{3})$$
. **Hinweis:** Um den komplizierten Ausdruck $\frac{-1+\sqrt{19}}{3}$ nicht

eingeben zu müssen, markieren sie diesen im Algebra-Fenster blau und übernehmen diesen dann mit der F3-Taste in die Eingabezeile. Tippen Sie also Schreibe | $\underline{\mathbf{A}}$ usdruck | $\underline{\mathbf{f}}$ _2(| $\mathbf{F3}$ |).

- i) Zeichnen Sie die Funktion f.
- **Aufgabe 2:** Schließen Sie das Algebra-Fenster und erstellen Sie eine neue Datei (<u>Datei | Neu</u>). Lassen Sie sich das Blatt "Protokoll zur Kurvendiskussion mit DERIVE" geben.
 - a) Führen Sie nun mit Hilfe des Protokolls eine Kurvendiskussion zur Funktion $f(x) = -x^5 10x^4 25x^3$ durch. Versuchen Sie sich an der Spalte "Eingabe in DERIVE" zu orientieren.
 - b) Lassen Sie sich die Punkte p_1, p_2, ..., p_5 in Zahlen ausgeben. "Vereinfachen" Sie dazu die Punkte algebraisch.
 - c) Erweitern Sie die Kurvendiskussion um die Bestimmung der Wendepunkte. Lassen Sie auch diese Punkte von DERIVE in Zahlen ausgeben.
 - d) Zeichnen Sie die Funktion f.